15,587 research outputs found

    Exponential decay of correlation for the Stochastic Process associated to the Entropy Penalized Method

    Get PDF
    In this paper we present an upper bound for the decay of correlation for the stationary stochastic process associated with the Entropy Penalized Method. Let L(x, v):\Tt^n\times\Rr^n\to \Rr be a Lagrangian of the form L(x,v) = {1/2}|v|^2 - U(x) + . For each value of ϵ\epsilon and hh, consider the operator \Gg[\phi](x):= -\epsilon h {ln}[\int_{\re^N} e ^{-\frac{hL(x,v)+\phi(x+hv)}{\epsilon h}}dv], as well as the reversed operator \bar \Gg[\phi](x):= -\epsilon h {ln}[\int_{\re^N} e^{-\frac{hL(x+hv,-v)+\phi(x+hv)}{\epsilon h}}dv], both acting on continuous functions \phi:\Tt^n\to \Rr. Denote by ϕϵ,h\phi_{\epsilon,h} the solution of \Gg[\phi_{\epsilon,h}]=\phi_{\epsilon,h}+\lambda_{\epsilon,h}, and by ϕˉϵ,h\bar \phi_{\epsilon,h} the solution of \bar \Gg[\phi_{\epsilon,h}]=\bar \phi_{\epsilon,h}+\lambda_{\epsilon,h}. In order to analyze the decay of correlation for this process we show that the operator L(ϕ)(x)=ehL(x,v)ϵϕ(x+hv)dv, {\cal L} (\phi) (x) = \int e^{- \frac{h L (x,v)}{\epsilon}} \phi(x+h v) d v, has a maximal eigenvalue isolated from the rest of the spectrum

    Majorana Fermions Signatures in Macroscopic Quantum Tunneling

    Full text link
    Thermodynamic measurements of magnetic fluxes and I-V characteristics in SQUIDs offer promising paths to the characterization of topological superconducting phases. We consider the problem of macroscopic quantum tunneling in an rf-SQUID in a topological superconducting phase. We show that the topological order shifts the tunneling rates and quantum levels, both in the parity conserving and fluctuating cases. The latter case is argued to actually enhance the signatures in the slowly fluctuating limit, which is expected to take place in the quantum regime of the circuit. In view of recent advances, we also discuss how our results affect a π\pi-junction loop.Comment: 10 pages, 11 figure

    A dynamical point of view of Quantum Information: entropy and pressure

    Full text link
    Quantum Information is a new area of research which has been growing rapidly since last decade. This topic is very close to potential applications to the so called Quantum Computer. In our point of view it makes sense to develop a more "dynamical point of view" of this theory. We want to consider the concepts of entropy and pressure for "stationary systems" acting on density matrices which generalize the usual ones in Ergodic Theory (in the sense of the Thermodynamic Formalism of R. Bowen, Y. Sinai and D. Ruelle). We consider the operator L\mathcal{L} acting on density matrices ρMN\rho\in \mathcal{M}_N over a finite NN-dimensional complex Hilbert space L(ρ):=i=1ktr(WiρWi)ViρVi,\mathcal{L}(\rho):=\sum_{i=1}^k tr(W_i\rho W_i^*)V_i\rho V_i^*, where WiW_i and ViV_i, i=1,2,...ki=1,2,...k are operators in this Hilbert space. L\mathcal{L} is not a linear operator. In some sense this operator is a version of an Iterated Function System (IFS). Namely, the Vi(.)Vi=:Fi(.)V_i\,(.)\,V_i^*=:F_i(.), i=1,2,...,ki=1,2,...,k, play the role of the inverse branches (acting on the configuration space of density matrices ρ\rho) and the WiW_i play the role of the weights one can consider on the IFS. We suppose that for all ρ\rho we have that i=1ktr(WiρWi)=1\sum_{i=1}^k tr(W_i\rho W_i^*)=1. A family W:={Wi}i=1,...,kW:=\{W_i\}_{i=1,..., k} determines a Quantum Iterated Function System (QIFS) FW\mathcal{F}_{W}, $\mathcal{F}_W=\{\mathcal{M}_N,F_i,W_i\}_{i=1,..., k}.

    A dynamical point of view of Quantum Information: Wigner measures

    Full text link
    We analyze a known version of the discrete Wigner function and some connections with Quantum Iterated Funcion Systems. This paper is a follow up of "A dynamical point of view of Quantum Information: entropy and pressure" by the same authors

    Spectral Properties of the Ruelle Operator for Product Type Potentials on Shift Spaces

    Full text link
    We study a class of potentials ff on one sided full shift spaces over finite or countable alphabets, called potentials of product type. We obtain explicit formulae for the leading eigenvalue, the eigenfunction (which may be discontinuous) and the eigenmeasure of the Ruelle operator. The uniqueness property of these quantities is also discussed and it is shown that there always exists a Bernoulli equilibrium state even if ff does not satisfy Bowen's condition. We apply these results to potentials f:{1,1}NRf:\{-1,1\}^\mathbb{N} \to \mathbb{R} of the form f(x1,x2,)=x1+2γx2+3γx3+...+nγxn+ f(x_1,x_2,\ldots) = x_1 + 2^{-\gamma} \, x_2 + 3^{-\gamma} \, x_3 + ...+n^{-\gamma} \, x_n + \ldots with γ>1\gamma >1. For 3/2<γ23/2 < \gamma \leq 2, we obtain the existence of two different eigenfunctions. Both functions are (locally) unbounded and exist a.s. (but not everywhere) with respect to the eigenmeasure and the measure of maximal entropy, respectively.Comment: To appear in the Journal of London Mathematical Societ
    corecore